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We present a generalization of the reaction coordinate driven method to find reaction paths and transition
states for complicated chemical processes, especially enzymatic reactions. The method is based on the definition
of a subset of chemical coordinates; it is simple, robust, and suitable to calculate one or more alternative
pathways, intermediate minima, and transition-state geometries. Though the results are approximate and the
computational cost is relatively high, the method works for large systems, where others often fail. It also
works when a certain reaction path competes with others having a lower energy barrier. Accordingly, the
procedure is appropriate to test hypothetical reaction mechanisms for complicated systems and provides good
initial guesses for more accurate methods. We present tests on a number of simple reactions and on several
complicated chemical transformations and compare the results with those obtained by other methods. Calculation
of the reaction path for the enzymatic hydrolysis of the substrate by dUTPase for an active-site model with
85 atoms, including several loosely bound water molecules, indicates that the method is feasible for the study
of enzyme mechanisms.

Introduction

The multidimensional potential energy surface (PES) of a
molecule contains important information on geometries and
relative energies of its locally stable structures, as well as
reaction paths between these, which are simplest characterized
by transition states and internal minima.1 The transition states
(TS) are saddle points on the PES, so they have all gradients
zero, just like minima, but just one of their force constants is
negative. This means that they are minima for all coordinates
except for one, the reaction coordinate. While locating minima
is straightforward (move down with steepest gradient), the
location of a saddle point is not simple, since there are an infinite
number of different paths to move up. Theoretically, the
eigenvector belonging to the only negative eigenvalue would
be the solution, but the convergence region where the Hessian
has the proper structure is small. For large systems, like
enzymes, there are several “soft” coordinates, like the rotation
of a methyl group at the end of some side chain or the
displacement of loosely bound water molecules. Though these
coordinates are irrelevant for the chemist, they also may provide
mathematically proper saddle points on the PES; therefore, an
effective method must be able to distinguish the true reaction
path from the irrelevant ones.

The simplest algorithm to determine a reaction path is to
perform a relaxed PES scan using an internal coordinate (or a
fixed combination of coordinates), which overlaps well with
the reaction coordinate.2 During the scan, we change the value
of this “reaction coordinate” stepwise and optimize the geometry
in every step keeping the active coordinate frozen. This
procedure is called the reaction coordinate driven (RCD)

method,3 which has a serious drawback, because it fails if the
overlap between the chosen and real reaction coordinates is not
large enough. For complicated multistep reactions, finding an
acceptable reaction coordinate is often impossible. There is also
another problem with the RCD method extensively analyzed
by Williams and Maggiora,4 since they found that it does not
work for every PES. If the saddle point is at the end of a valley,
then it can be found by the RCD method; however, if it is
located elsewhere, the RCD algorithm cannot bring the system
out of the valley (Figure 1). If we start from the reactant, the
calculated path is in the reactant valley (R-B line). Point B is
an inflection of the surface; thus, the valley ends, and the
optimizer finds point C next. So, the calculated reaction path
will be R-B-C-P. The opposite direction will result in the
P-D-A-R path, which is also far from the desired one. Since
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Figure 1. A two-dimensional PES where the RCD method fails. The
method yields either R-B-C-P or P-D-A-R, while the MEP
between the reactants (R) and products (P) is represented by the gray
line. Dots have been calculated by the method described in this paper
(for more details, see the Results and Discussion section.
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no further points can be located between B and C, a discontinu-
ity appears on the energy plot (Figure 2), and the energy of the
true saddle point cannot be found.

This problem also exists in higher dimensions; therefore, if
we do not have information on the PES in advance, the RCD
method may lead to useless results.

In the following, we will give a brief overview on the various
accurate methods applied to the calculation of transition states
and reaction paths; for a more detailed review, see refs 5 and
6. They can be divided in two groups, the surface walking and
the two-end methods.

The surface walking methods need an initial guess and look
for the TS as a saddle point on the PES. The eigenvector-
following (EF) methods7-9 are able to find minima and first-
or higher-order saddle points. When used for searching a
transition state, they need an initial guess for the geometry, then
the Hessian is constructed analytically, numerically, or by
approximation, and finally, the appropriate eigenvectors are
generated. If the Hessian has the correct number of negative
eigenvalues, then a rational function optimization (RFO)10 step
is made. If the energy in the new point differs significantly from
the previous estimate or the new Hessian has a wrong structure,
the trust radius (the maximum size of the step) should be
reduced. The main drawback of this method is that the initial
guess should be in the near vicinity of the TS where the
curvature of the PES is similar to that at the TS. If we want to
calculate a reaction path containing intermediate structures,
which are represented by local minima on the PES, we need
initial geometry guesses for each transition state. Since we use
the eigenvectors of the Hessian, this needs to be accurate, and
other problems may also arise.

The Reduced PES Path Search11 method solves the problem
of the soft coordinates by partitioning the coordinates into two
subsets. The coordinates which are important for the reaction
form the active subset; the rest form the nonactive one. The TS
is searched on the reduced PES, which has as many dimensions
as active coordinates. The rest of the coordinates is optimized.
In this subset, an “image quadratic function” is defined and
minimized in order to find the next point on the path, which
was found12 to be one of the reduced gradient paths.

The two-end methods use information from both the reactants
and the products of a reaction and locate the TS between them.
Peng and Schlegel13 proposed a two-end TS search algorithm,
called the synchronous transit-guided quasi-Newton (STQN)
method, and implemented in theGaussian 03program package14

under the QST keyword. This method is fast, stable, and does
not need analytical Hessians but uses updated approximations;
however, it has some drawbacks. First, it can only find one
saddle point between two neighboring deep minima and fails
to converge if a shallow intermediate minimum is located
between them. Second, it highly depends on the difference
between the initial guess used for the synchronous transit

method15 and the real TS. If the guess is wrong, than the STQN
method converges slowly or even fails to converge.

A path optimization algorithm17 was also implemented to
Gaussian 03.14 In this, the path is represented by several
geometries. During refinement, these geometries are changed
to reduce the force components perpendicular to the path, and
then, the points are redistributed, keeping a similar distance from
each other and therefore serving as milestones on the path. With
large systems, we face another problem, namely, during the
redistribution step, the distance of the points may depend on
the chemically irrelevant soft coordinates. This problem can be
solved18 by weighting the coordinates by their chemical
importance, so a coordinate change referring to a forming or
breaking bond counts much more than the rotation of some
loosely bound water molecule.

While the Ayala-Schlegel path optimization method per-
forms microiterations to combine the path relaxation with the
point redistribution, the nudged elastic band (NEB) method19-21

uses a quadratic “spring potential” to prevent the path points
from falling back to the ending minima instead of the appropriate
point of the reaction path. However, overly strong spring forces
can cut down corners of the path. To avoid such kinks (artifacts)
and the points falling down to low-energy regions, the tangent
of the path is estimated, and the real forces parallel as well as
the spring forces perpendicular to the path are discarded. This
method can calculate pathways with internal minima and
multiple saddle points; it needs initial guesses, which are usually
created by linear interpolation, and converges slowly if these
are inappropriate. For large systems, it may fail to converge21

even if the spring force is appropriate, because the root-mean-
square (rms) difference referring to two adjacent points can also
decrease if changing irrelevant soft coordinates. This problem
can be solved21 if the spring forces relate only to important
coordinates.

The string method23 uses a similar concept as the Ayala-
Schlegel path optimization method, but a different algorithm is
used to obtain the points of the reaction path. The growing string
(GS) method24 is a further augmentation. It makes predictor and
corrector steps by growing two strings from the endpoints with
a user set step length until these ends meet, forming a string.
Unlike all other methods, this one does not need an initial guess
for the geometry; therefore, it is robust, but due to its complexity,
it converges very slowly.

The reduced gradient following (RGF)25,26 method uses the
fact that in minima and transition states the gradients are zero.
It seeks lines on the PES between such neighboring points with
all gradients zero except for the one which serves as the driving
coordinate. The RGF projector is found to be applicable27 for
string methods, too.

Molecular dynamics can also be used to examine reactions,
but since bond breaking and bond forming cannot be studied
by molecular mechanics, we must use ab initio molecular
dynamics, which is extremely expensive. There are methods
available28 which concentrate on MD samples between reactant
and product structures; therefore, they are much more cost-
effective, but still very expensive and should be used only if
we need more than just a path, like reaction rates or the ratio of
competitive paths.

Method

We propose a new and simple method, which needs optimized
reactant and product structures and a rough guess on the
mechanism in order to calculate reaction paths. It is quite robust,
but still converges at an acceptable rate for a number of

Figure 2. Plot of the energy vs the RCD path for the PES of Figure
1.
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elementary chemical reactions. A special advantage is allowing
the user to make a calculation for the hypothetical mechanism,
even if it does not yield the minimum energy path or if it
involves the synchronous movement of several atoms. After
describing the algorithm, we will present some test calculations
and compare our results with those obtained by other methods.

Our reaction path searching algorithm is based on the old
RCD algorithm outlined in the Introduction; this is why we call
it the multicoordinate driven (MCD) method. Like the other
two-end methods, it needs both reactant and product structures.
First, we need to select internal coordinates, which should
change monotonically during the reaction; their number is not
limited, unlike in RCD. Let us now define these coordinates
for the F- + H3C-F* f F-CH3 + F*- reaction. These are
the F-C distance, changing from 2.6 to 1.4 Å, and the C-F*
distance, changing from 1.4 to 2.6 Å. Now, locating the
minimum energy pathway means finding the lowest-energy way
to change the active coordinates from their initial values to the
final ones.

At this point, the MCD method follows the reaction path
philosophy of the RCD method: steepest descent from the TS
to the minimum and shallowest ascent from the minimum to
the TS. Three problems are also inherited from the RCD method.
At first, the forward path differs from the backward path. This
has no physical meaning: it is a natural error of the method. If
a more sophisticated path is needed, IRC16 can provide it using
the found TSs. Second, since it applies constraints to the step,
turnings are not allowed, so it cuts down the real turns of the
path. If the turns are small, than the TS candidate found is not
far from the real TS, so it is an acceptable guess. However,
where the true reaction path has large turns, our method does
not work, just like RCD. Finally, as in the problem mentioned
in Figures 1-2, RCD gets stuck in a valley. If the valley is just
an artifact, created by projection of the PES into a subspace,
MCD solves the problem, since the subspace can be increased.
If the valley is real in the full dimensionality of the system,
like in Figure 1, the MCD path will also differ from the real;
however, it will not become discontinuous and provide points
with different energy. In most cases, the highest energy point
is a good initial guess, but in rare cases, it can be too far from
the real TS, which provides a failure in the subsequent EF
calculations. In the case of the problem in Figure 1, the MCD
calculated points differ from the right path and even miss the
true TS, but are much closer to it than that provided by the
RCD method and are within the convergence region of the TS,
so it provides a good initial guess.

The energy change between two geometries labeleda andb
is given by eq 1, wherefi(x) is the force on theith coordinate
at its value ofx, anN dimensional vector, and summation runs
over all independent coordinates

Equation 1 cannot be implemented, since we cannot follow a
coordinate change, which we cannot predict at least ap-
proximately. For example, in the F- + H3C-F* f F-CH3 +
F*- reaction, the H-C-H angle is 110.9° in both the reactants
and the products, but it is 120° in the transition state. This cannot
be predicted without knowing the reaction path accurately.
Accordingly, we follow only predictable coordinates which are
selected by exploiting the user’s knowledge of the reaction and
chemical intuition. This also allows one to use the popular
redundant coordinate systems for the geometry optimizer; since

only “active” coordinates have to be linearly independent, the
nonactive ones may be redundant. To avoid an energy change
due to dropping the rest of the coordinates, we constantly
optimize their value, thus keeping the forces along them
practically zero. Accordingly, the respective term in eq 1 will
vanish, and we obtain the following expression

Integration in eq 2 cannot be performed analytically, so we have
to apply a numerical procedure. The nonactive coordinates will
vanish only if we keep them continuously optimized along the
reaction path. This would mean that the numerical integration
must be performed with an infinitely small step size. In case of
finite step sizes, the error is acceptable if the change of the
nonactive coordinates or the forces along them are small. This
can be assured by setting every important coordinate active.

The forces along the active coordinates change continuously,
too, leading to errors in the numerical integration with finite
step sizes. To reduce this error, instead of using only the force
fi(x) between pointsa andb, we use a linearly changing gradient
approximated by the Hessian in pointa, as given in eq 3, where
∆xi ) xi(b) - xi(a) andHija is the (ij ) element of the Hessian in
point a. This approximation is acceptable if the step size does
not exceed the size of the quadratic region ofa.

The MCD method calculates∆xi values for all active
coordinates in every point, by minimizing∆E of eq 3 with two
constraints. The sum of∆xi values (which is not equal to the
length of the vector) is constrained to the step size. The other
constraint is that no∆xi value can change backward, i.e., in the
productf reactant direction. This can be avoided if we use
internal coordinates, which change monotonically during the
reaction. The minimization is carried out in a simple way:
change one∆xi and accept the change if∆E decreases, then
repeat the procedure until convergence. We are aware that more
sophisticated minimization methods exist, but the cost of the
calculation of∆xi is irrelevant compared to self-consistent field
(SCF) or force calculations, so an improvement would not
reduce computational costs. The active coordinates have to be
modified by the∆xi values, and then, the geometry of the new
structure should be optimized keeping the active coordinates
fixed, just like in the case of the RCD method. This way we
can construct the reaction path point by point until all
coordinates reach their final values set by the user. If the
tentative mechanism was correct, the last point will correspond
to the product structure.

Our method cannot find the exact transition states; it provides
only initial guesses. It may lead to discontinuous paths, so if
not only the stationary points are needed, the path has to be
recalculated by the IRC method16 using the exact stationary
points. It allows the user to find a subset of coordinates which
change monotonically during the reaction; therefore, a prelimi-
nary guess for the path is needed. The STQN,13 NEB,19-21

string,23,24 reduced PES search,11 and RGF25,26methods are all
able to find exact stationary points, as well as the path. Some
of them even work as a black box; only a good initial guess for
the reactant and product structures is needed, and the rest is
done automatically. The reason we propose this method for
complicated reactions is its simplicity and its power to provide

∆E ) ∑
i)1

N ∫xia

xib - fi(x ) dxi (1)

∆E ) ∑
i)1

Nactive∫xia

xib - fi(x) dxi (2)

∆E ≈ ∑
i

Nactive(-fia +
1

2
∑

j

Nactive

Hija∆xj)∆xi (3)
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good initial guesses for further calculations. In the absence of
such guesses, the presently available methods may fail for most
complicated reactions; they do not converge or provide false
results for the saddle point. All geometry optimizers, transition
state, and reaction path calculation methods need the Hessian
(Hij ) ∂2E/∂xi∂xj). However, calculating it explicitly is extremely
expensive in terms of both CPU time and storage space. The
alternative of the analytical or accurate numerical calculation
is to start from some initial guess29,30 and update it in every
geometry optimization step. Several methods exist to do this,
like BFGS,31 which is most popular for minimization, and the
algorithms by Bofill32,33 for transition states. Though these
methods provide good approximations for the Hessian, two
fundamental problems cannot be circumvented. First, if the
initial Hessian was inaccurate, the updates involve a lot of
computational work. Second, these methods use a number ofN
gradients andN displacements to update the Hessian having
N(N + 1)/2 independent elements; therefore, the accuracy will
decrease linearly with the size of the system,N. For geometry
optimizations, this only increases the computational cost, since
one can make small steepest descent steps with the gradients
getting gradually closer to the minimum and providing informa-
tion for the updated Hessian. However, the vector pointing
toward the TS can only be derived from the Hessian; therefore,
a poor estimate can even lead to the failure of the search. Our
MCD method will also work with low-quality Hessians, since
in eq 3, it is multiplied by the second power of the∆xi steps,
which means that a smaller step size decreases its weight. A
smaller step size also increases the number of force calculations,
providing more information for the updating of the Hessian,
which is saved in every point and can be used as an initial guess
for the EF method locating of the TS. On the other hand, the
exact methods above, which use sophisticated algebra, make
several transformations in the Hessian accumulating its errors,
which finally leads to a failure in the convergence. Our method
is stable; we have never observed a failure in convergence for
the test calculations presented here.

The current implementation of the MCD method is a code
written by one of the authors (I. B.) in the Pascal program
language and compiled with the FreePascal34 compiler. It reads
the output from and creates input for theGaussian 03package,14

using it for the geometry optimization in each step. The source
code, the WIN32 and the LINUX executable programs, as well
as a manual, and sample calculations are available for download
from the website http://www.chem.elte.hu/departments/elmkem/
berente.

Results and Discussion

We tested the MCD method for various chemical reactions
of increasing complexity, which we will discuss below in detail.
All stationary point geometries were converged to the default
values of theGaussian 03:14 maximum force) 0.00045, rms
force ) 0.0003, maximum displacement) 0.0018, rms dis-
placement) 0.0012 (all values in atomic units). The existence
of the transition states were verified by the IRC16 method; they
are on the reaction path running between the reactants and the
products.

Walden Inversion. We calculated the F- + H3C-F* f
F-CH3 + F*- reaction path with the Hartree-Fock molecular
orbital method at the RHF/6-31G level with the F-C and C-F*
distances as active coordinates using theGaussian 03program
package.14 To test the maximal performance of the method, we
set the step size as small as 1 pm. The calculated reaction path
is compared with those obtained by the RCD and Ayala-

Schlegel methods in Figure 3. As can be seen, our method
provides a path, which is remarkably close to the accurate one.

Alanine Dipeptide Rearrangement.We repeated the test
calculation by Peters et al.,24 a density functional study using
the B3LYP parametrization and a 6-31G basis set on the test
molecule HCONH-CH(CH3)-CONH2. The reaction coordi-
nates were the C-N-CR-C (φ) and N-CR-C-N (ψ) torsion
angles; the initial structure was the one called C5 in ref 24; the
step size was set to 0.5 Å (∼50°). The final structure was
identical to that called C7AX in ref 24. Calculating the points on
the reaction path needed 52 SCF and subsequent gradient
calculations. We used the highest-energy point on the path as
an initial guess for an RFO saddle point search, which found a
saddle point within 18 steps. Our transition-state geometry is
identical to that shown in Figure 8 of ref 24 withφ ) 112.1°
(107.3°) andψ ) -140.4° (-139.7°); the activation energy is
31.7 (31.8) kJ/mol (values of ref 24 in parentheses). To calculate
the full reaction path containing the saddle point, we did 69
SCF and subsequent gradient calculations, while the nudged
elastic band19 and growing string24 methods need more than
250 and 200 steps, respectively, according to Peters et al.24

Hydrolysis of γ-Butyrolactone. This reaction (cf. Figure 4)
serves as an appropriate test of the stability of the MCD method
in the case of a multistep reaction. We did calculations at the
RHF/6-31+G* level and selected thea-b, a-d, and c-d
distances as active coordinates; the step sizes were 0.15, 0.3,
0.45, and 0.6 Å, respectively (see Figure 4). Geometries
corresponding to the local minima were optimized, and the
highest-energy points served as initial guesses for an EF search.
Though the MCD calculations provided more and more inac-
curate results with increasing step size, even the worst has
provided a good guess for the RFO method to find both
transition states. Convergence could be reached after 250+ 49,
142 + 57, 109+ 67, and 82+ 58 MCD + EF gradients for
step sizes of 0.15, 0.3, 0.45, and 0.6 Å, respectively (see Figure
5). The STQN calculation obviously failed, since it is unable
to handle more than one transition state. However, an STQN
calculation between the initial and internal minima converged

Figure 3. Reaction paths for the Walden inversion as calculated by
the MCD (dashed line), RCD (thin line), and Ayala-Schlegel (thick
line) methods. Coordinates in angstroms.

Figure 4. Hydrolysis ofγ-butyrolactone.
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and provided TS1. Between the internal minimum and the
endpoint, STQN locates a TS, which belongs to a different
reaction path with a barrier higher than ours by 2.8 kJ/mol.

We tested the MCD method on six further reactions, for which
published results of STQN calculations (Gaussian 03,14 QST2
keyword) are available; the results are summarized in Table 1.
All calculations were made at the RHF/3-21G* level; the input
structures are available on http://www.chem.elte.hu/departments/
elmkem/berente. We used the highest-energy point as an initial
guess for the saddle-point search eigenvector-following method.
The initial Hessian for EF was calculated analytically. We would
like to emphasize that we did not consider whether the
mechanisms of the studied reactions are appropriate or not; only
the mathematical performance of the method has been consid-
ered. For each reaction, we obtained transition-state geometries
and activation energies identical with those provided by the
STQN method where it was available. We also tried to calculate
the path by the Ayala-Schlegel method; however, we observed
a failure in the convergence.

Pyrolytic Cracking of 2-Butyl Acetate (Figure 6). We
selected thea-b, c-d, andd-edistances as active coordinates,
and the step size was 0.5 Å.

Grignard Reaction (Figure 7). The active coordinates were
thea-c distance and theb-d-e bond angle, and the step size
was 0.5 Å. For the bending and torsion coordinates, the program
considers 1 rad to be equivalent with 1 bohr (0.529 Å).

1,4-Addition of HCl to Butadiene (Figure 8). We selected
thea-b, c-d, andb-d distances as active coordinates, and set
the step size at 0.5 Å.

Hydroxymethylation of Benzene by formaldehyde with
HCl‚ZnCl2 as a catalyst (Figure 9). The active coordinates were
the a-b, b-f, e-f, c-g, andc-d distances, and the step size
was 0.5 Å.

Meerwein-Ponndorf-Verley (MPV) Reaction with acet-
aldehyde (Figure 10). The step size was 0.5 Å, and the
coordinates were thea-b anda-c distances.

Acid-Catalyzed Condensationof propanol and ethanol to
yield ethyl propyl ether (Figure 11). The system was protonated,
therefore had a net positive charge. The active coordinates were
the a-b anda-c distances, and the step size was 0.5 Å.

Substrate Hydrolysis by dUTPase.The ubiquitous enzyme
dUTPase performs a key role in preventing uracil incorporation

Figure 5. Energy (kJ/mol) vs reaction coordinate plot for butyrolactone hydrolysis. Step sizes are shown in the box; large crosses denote from left
to right: reactants, TS1, internal minimum, TS2, and products, respectively, each obtained by refining the MCD provided guess with the eigenvector
following method. The reaction coordinate is defined as the average progress of the active coordinates between their values for the reactant and the
product.

TABLE 1: Comparison of the Performance of the MCD and
STQN Methods for the Calculation of Relatively Complex
Reactions

reaction
step number

(MCD)
step number

STQN14
energy barrier

(kJ/mol)

pyrolytic cracking 116 62 255.7
Grignard reaction 101 66 75.9
butane 1-4 HCl addition 162 41 170.6
hydroxymethylation 282 Failed 131.6
MPV 121 66 115.1
ether condensation 109 Failed 240.2

Figure 6. Reactant and products for the pyrolytic cracking reaction
of 2-butyl acetate.

Figure 7. Reactants and products for the Grignard reaction involving
dimethyl ether and acetone.

Figure 8. Reactants and products for the HCl addition to butadiene.
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into DNA by catalyzing the cleavage of dUTP into dUMP and
inorganic pyrophosphate.35,36 The reaction scheme is depicted
in Figure 12.

We calculated the reaction path in the frame of the Hartree-
Fock approximation with a 6-31G* basis set on the model with
a zero total charge (Figure 13). In the following, we not only
show an example but also present a step-by-step guide to an
MCD calculation.

1. On the basis of the assumed reaction path, we set the active
coordinates: the H3-O4, H3-O5, O5-P1, and P1-O6 bond
lengths. We used the usual 50 pm step size. We had no initial
guess for the product structure; therefore, we set the target value
of the active coordinates to be equal to the values for a different
system37 which was similar to what we expected as the product.
The MCD calculation provided the energy versus reaction
coordinate plot denoted by squares in Figure 14.

2. The structure that belongs to the point denoted by a in
Figure 14 is a local minimum candidate. We optimized it and
located structure A. We did not expect an intermediate product
during the reaction, but the MCD procedure provided one. In
this intermediate, the H3-O4 bond is formed and the H3-O5

bond is broken. However, the O5-P1 bond length is 172 pm,
while the P1-O6 length is 182 pm; both are too large as
compared to realistic values, which are 155 pm for the PdO
and 160 pm for the PsO bond lengths. P1 has a trigonal
bipyramid structure. We also noticed that the H3-O5 distance
is much less than we originally expected: H3 remains within

H-bonding distance from O5. This explains the peak denoted
by b in Figure 14. The difference between the two b structures
is a H-bond formed between H3 and one of the oxygen atoms
of P1. However, this is an artifact caused by forcibly removing
the H-bonding partner of H3.

3. To solve the problem explained before, we started a new
calculation from the local minimum; the results are denoted by
plus signs in Figure 14. It has only one active coordinate, the
P1-O6 distance.

4. After a few steps, to save time, we terminated the MCD
calculation and optimized its last structure, c, and obtained the
product structure C.

5. Structures d and e served as initial guesses for transition
states. First, we optimized their geometries, keeping the active
coordinate frozen and allowing the updater to create an

Figure 9. Hydroxymethylation of benzene by formaldehyde with HCl‚
ZnCl2 as a catalyst.

Figure 10. The Meerwein-Ponndorf-Verley (MPV) reaction.

Figure 11. Acid-catalyzed condensation of propanol and ethanol.

Figure 12. Schematic reaction scheme of the hydrolysis of dUTP by
the enzyme dUTPase.

Figure 13. Atomistic resolution model of the active site of the
dUTPase-substrate complex.

Figure 14. Reaction path for the substrate hydrolysis by dUTPase
calculated by the MCD method.
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acceptable Hessian; than, we started an RFO TS search which
provided D and E. Both were found to be real saddle points
and belong to the reactant-intermediate and intermediate-
product reaction paths.

The MCD calculations needed 214 steps; refining the
intermediate and the transition states needed 577 steps. Using
MCD and evaluating results, we were able to find an unexpected
intermediate structure and both transition states for a system
with 85 atoms. The existence of such an intermediate is
nowadays subject to intensive debate,38,39 and there is strong
evidence that, for another substrate,R,â-imino-dUTP, the
intermediate could be located.36 Our calculations indicate that
the presence of a short-lived intermediate cannot be ruled out.
Further sophisticated calculations are in progress to address the
problem of theR,â-imino-dUTP substrate.

Conclusions

The MCD method is a useful tool to calculate the pathway
of any hypothetical reaction, allowing the chemist to follow
numerically even the most complicated mechanisms. It deter-
mines the path point by point, so the procedure can be
terminated if unacceptable results are obtained in a point
calculated earlier. It cannot be used as a black box method,
and furthermore, it is relatively slow; therefore, where available,
the STQN, RGF, Bofill, or even the manual guess+ EF methods
provide better results. However, for complicated reactions, like
enzyme processes, its stability and wide parametrizability make
the MCD method useful to obtain an initial guess for the reaction
path, especially for the transition-state geometry.
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